MATH 1A - QUIZ 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

(1) (8 points) Consider the following function:

$$
f(x)=\cos ^{-1}\left(e^{x}\right)
$$

(a) (2 points) Find the domain of f

We want $e^{x} \in \operatorname{Dom}\left(\cos ^{-1}(x)\right)=[-1,1]$, hence $-1 \leq e^{x} \leq 1$.
However, $-1 \leq e^{x} \leq 1 \Rightarrow e^{x} \leq 1$ (because $e^{x}>0$ for all $\left.x\right) \Rightarrow x \leq 0$.
Hence: $\operatorname{Dom}(f)=(-\infty, 0]$
(b) (2 points) Find the range of f

Notice that $0<e^{x} \leq 1$ (because $x \leq 0$ here)
Hence $\cos ^{-1}(0)>\cos ^{-1}\left(e^{x}\right) \geq \cos ^{-1}(1)$ (because $\cos ^{-1}(x)$ is decreasing).
That is: $\frac{\pi}{2}>f(x) \geq 0$
Hence, we get: $\operatorname{Ran}(f)=\left[0, \frac{\pi}{2}\right)$
(c) (2 points) Show that f is one-to-one

Suppose $f(x)=f(y)$, then:

$$
\begin{aligned}
\cos ^{-1}\left(e^{x}\right) & =\cos ^{-1}\left(e^{y}\right) \\
\cos \left(\cos ^{-1}\left(e^{x}\right)\right) & =\cos \left(\cos ^{-1}\left(e^{y}\right)\right) \\
e^{x} & =e^{y} \\
\ln \left(e^{x}\right) & =\ln \left(e^{y}\right) \\
x & =y
\end{aligned}
$$

Hence $x=y$, and we're done!
(d) (2 points) Find a formula for $f^{-1}(x)$

1) Let $y=\cos ^{-1}\left(e^{x}\right)$
2) Then:

$$
\begin{aligned}
\cos ^{-1}\left(e^{x}\right) & =y \\
\cos \left(\cos ^{-1}\left(e^{x}\right)\right) & =\cos (y) \\
e^{x} & =\cos (y) \\
\ln \left(e^{x}\right) & =\ln (\cos (y)) \\
x & =\ln (\cos (y))
\end{aligned}
$$

3) Hence: $f^{-1}(x)=\ln (\cos (x))$
(2) (2 points total) Evaluate the following limits:
(a) (1 point)

$$
\lim _{x \rightarrow 1^{+}} \ln \left(x^{2}-1\right)=\ln \left(1^{+}-1\right)=\ln \left(0^{+}\right)=-\infty
$$

(b) (1 point)

$$
\lim _{x \rightarrow \frac{1}{2}} \sin ^{-1}(x)=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

(because $\sin ^{-1}\left(\frac{1}{2}\right)$ is the angle θ such that $\sin (\theta)=\frac{1}{2}$, that is $\theta=\frac{\pi}{6}$)

